
Emotions are ineluctably tied to our 
actions in and perceptions of the world. 
They organize and colour our behaviour, 
physiological states and conscious feelings. 
Perhaps less obviously, they are also a key 
part of our evolutionary heritage1 and thus 
are putatively adaptive. However, empirical 
debates about emotions abound. This is partly 
because there are different views, based on 
divergent definitions of an emotion, that aim 
at explaining disjunctive sets of phenomena. 
For example, psychological approaches 
often put primacy on reported feelings such 
as fear, anger or happiness. These can be 
studied in relation to subjective experience 
in general (which is often collectively termed 
‘affect’)2,3 or in relation to other phenomena 
such as bodily changes, action tendencies or 
motivational measures4,5. Other approaches6,7 
focus on the facial, prosodic and bodily 
expression of emotions, partly motivated 
by comparisons across species1. Ethological 
and neuroscience researchers commonly 
investigate non-human behaviours labelled 
with terms such as ‘anxiety-like’ or ‘fear 
learning’ by way of analogy to humans, albeit 
noting that such cross-species relationships 
are not always transparent8–11.

phenomena that are often classed as being 
emotional. The first is a computational 
analysis (BOX 1) of the goals that humans and 
other animals pursue when making choices 
in natural environments and of the actions 
that may be needed to achieve such goals. 
The second is an algorithmic analysis (BOX 1) 
of the procedures that would allow an agent 
to decide on these actions. We describe 
specific exemplars of algorithms that seem to 
control phenomena that are often associated 
with emotions. The last is an implemen-
tational analysis (BOX 1) of the possible 
neural substrates of these decision-making 
algorithms. According to this framework, 
one or more neural controllers are engaged 
to decide singly or collectively upon a 
specific response. Sophistication within 
the controllers, and in their selection and 
reconciliation, may lead to a substantial 
heterogeneity in the output, including both 
phenomena associated with emotions and 
other overt and covert behaviours.

Bayesian decision theory (BDT) (BOX 1) 
provides a compelling computational-level 
prescription of adaptive behaviour. However, 
it suffers from statistical complexity in 
its requirement for a large amount of 
information in novel environments to 
produce good trajectories of choices and 
from calculational complexity in the 
assessment of the expected worth of those 
choices. We argue that the brain seems to 
have adopted two major simplifications 
to approximate optimal choice. Both 
simplifications are germane to emotions. 
The first simplification is to use partly 
pre-programmed algorithms to make these 
choices16. Here, we highlight the surprising 
richness of these algorithms, noting that 
they characteristically vary in at least three 
regards: the inputs that they consider, the 
extent to which they are plastic and the 
breadth of actions that they arbitrate. The 
second simplification is to combine multiple 
different sorts of algorithm, each of which 
excels in a different regime of training time 
and required speed17.

Although our approach applies equally 
to positive and negative circumstances, we 
mainly focus on decision making under 
circumstances involving proximal threat 
and use a decision-theoretic framework 
to arrange empirically known means to 

It is thus no surprise that the theories 
that ensue also vary substantially, even 
to the extent that the very concept of 
emotion is used at distinct, and sometimes 
incommensurable, levels of analysis12 
(BOX 1). Emotion is sometimes conceived 
as being related to the putative goals of 
an agent (such as seeking information 
about potential threats when engaging 
in risk assessment13), sometimes to the 
psychological entities that are associated 
with observable phenomena (such as the 
notion of emotional states of fear or anger 
that cluster together distinct forms of 
responding to cues and situations14), and 
sometimes to the neural circuits that control 
behaviour (such as fear circuits15). Most 
often, however, the concept is used in  
a largely taxonomical manner: to categorize 
measurable phenomena.

Here, for conciliation, we seek to 
circumvent the quandaries that are 
associated with the definitions of emotion. 
Instead, acknowledging that we eschew 
qualia (the joyfulness of joy, the fearfulness 
of fear, and so on), we use decision theory to 
describe three facets of the determinants of 
behaviour in specific situations that lead to 
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Abstract | The nature and neural implementation of emotions is the subject of 
vigorous debate. Here, we use Bayesian decision theory to address key 
complexities in this field and conceptualize emotions in terms of their relationship 
to survival-relevant behavioural choices. Decision theory indicates which 
behaviours are optimal in a given situation; however, the calculations required are 
radically intractable. We therefore conjecture that the brain uses a range of 
pre-programmed algorithms that provide approximate solutions. These solutions 
seem to produce specific behavioural manifestations of emotions and can also be 
associated with core affective dimensions. We identify principles according to 
which these algorithms are implemented in the brain and illustrate our approach 
by considering decision making in the face of proximal threat.
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achieve survival-relevant output. Threat 
encompasses many phenomena that are 
associated with emotions and also raises 
specific concerns that are somewhat less 
well explored in the rich field of decision 
neuroscience.

In this Opinion article, we aim to address 
several key issues. First, it has been difficult 
to decide between related emotion theories 
that try to explain the same phenomena 
(as exemplified in REF. 4). A decision-
theoretic analysis addresses this point by 
constraining the space of possible algorithms 
in terms of their efficacy. Second, there is 
little consensus as to whether emotional 
phenomena are the output of one or more 
dedicated mechanisms (for example, 
specific systems for appraising incoming 
sensory information14) or whether they are 
manifestations of the operation of more-
general-purpose systems (which is how 
constructionist approaches view the generation 
of conscious feelings18). If there are indeed 
dedicated mechanisms, we do not know 
whether they are discrete, whether they are 
associated with common-sense categories 
of emotion (such as circuits directly 
realizing fear), or whether such mechanisms 
jointly or individually drive dimensional 
aspects of emotions14,19. We show how a 

suggest that the goal for an individual’s 
preferences should be to prioritize 
reproductive fitness, including one’s own 
and relatives’ survival. However, practically, 
this metric is unusably long-term. 
Behaviour thus seems to be influenced by a 
range of more-proximal homeostatic forces 
such as hunger, thirst and (an aversion to) 
pain. Each of these forces might generate 
its own utility contribution by quantifying 
the beneficial or deleterious nature of 
states or stimuli. If these different utility 
contributions can be closely approximated 
as independent and commensurable, then 
making an overall choice based on their 
sum would be appropriate. That is, an 
agent could generate single behaviours 
that arbitrated as best as possible between 
seemingly incompatible demands on 
ultimate reproduction merely by consulting 
this overall utility.

There is indeed evidence that utility 
contributions25 and some forms of 
approximate overall utility26 are realized 
in neural systems. However, it is also 
known that decision-making algorithms 
can generate appropriate behaviour 
without reference to any explicit utility 
computation. A famous finding in 
economics is that if an organism’s behaviour 
satisfies some basic principles of rationality, 
such as consistency and transitivity, then 
there exists a utility function that is 
consistent with its choices27. Therefore, an 
organism’s behaviour can seem as if it had 
been generated by a utility function, even 
if this utility function is purely virtual. 
Elucidating such cases experimentally 
poses an obvious challenge.

Limited information. The next conceptual 
problem arises when biological agents 
have very limited information about 
very complex environments and, at the 
same time, when exploratory actions are 
dangerous, for instance in the face of mortal 
threat, starvation or dehydration. There 
are particularly severe computational costs 
attached to the standard decision-theoretic 
approach of building hierarchical Bayesian 
models in which this ignorance about 
aspects of the model is treated as itself 
being just another form of uncertainty28. 
One apparent solution to this conundrum 
is pre-programming: we argue that there are 
restrictive prior distributions that specify 
what to expect in the environment and 
constrained policies that map observations 
to actions. The pre-specification and the 
constraints obviate the costs of learning  
and computation16,29.

rapprochement between these positions 
can emerge from a decision-theoretic 
analysis. Last, we seek to provide clues as 
to the existence of meta-cognitive, and 
apparently low-dimensional, representations 
of affect2,20.

Approximately optimal decisions
At an abstract computational level21, 
appropriate behaviour can be specified 
by BDT. This maps states of beliefs about 
the world to optimal choices (BOX 1). The 
decisions made by humans and other 
animals often come surprisingly close to 
those that would be optimal according 
to BDT in simple, short-run tasks22–24. 
However, apparently simple prescriptions 
of BDT beg some critical conceptual 
problems concerning utility functions, 
limited information and the specification of 
possible actions. BDT also faces substantial 
computational challenges in more-
complicated problems; this focuses attention 
on approximations.

Utility functions. The first conceptual 
problem in BDT is a quantification of 
the costs and benefits that are associated 
with particular outcomes — this is called 
a utility function. Evolutionary precepts 

Box 1 | Levels of theoretical analysis

In computational neuroscience, it is common to distinguish different levels of analysis that go back 
to Marr21.

Computational level
At the computational level21, theoretical analysis focuses on formalizing the problem that the 
nervous system has to solve and on finding an appropriate, often optimal or normative, solution. 
One optimal solution to any decision-making problem is given by Bayesian decision theory 
(BDT)119. According to this theory, agents should create and maintain a so‑called belief state that 
summarizes the whole history of their past observations. To do so, they must use what is known as  
a generative model of the possible trajectories of environmental states and how those states 
generate sensory data (note that the ‘environment’ in this case encompasses the body of the 
agent). Agents should then make the choices that maximize average long-run benefit by 
computing an expectation over all possible present and future states along such trajectories.  
The long-run benefit is typically a weighted sum of the utilities of each possible outcome in the 
future, with more weight given to outcomes that occur sooner (temporal discounting). Specifying 
these outcome values is therefore a key ingredient of BDT. The BDT solution is a benchmark that no 
natural or artificial agent can surpass.

Algorithmic level
The algorithmic level of analysis concerns how a given problem is solved. Various fields have 
suggested exact and approximate algorithmic approaches to BDT. These have been given names 
such as optimal control theory, dynamic programming and reinforcement learning119–121. 
Approximations are necessary because normative solutions are often analytically intractable and 
cannot even be computed numerically offline in an exact manner. Many neuroscientists use 
reinforcement learning theory as a formal framework for stating and solving the decision-making 
problems that they pose to their subjects.

Implementational level
The implementational level of analysis considers the ways in which algorithms are realized in 
neural circuits. This spans descriptions on a macroscopic level (brain areas and large populations of 
neurons), on a mesoscopic level (modestly sized circuits of neurons subject to neuromodulatory 
influences) and on a microscopic level (within-neuron computations).
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Action repertoire. The final conceptual 
question relates to the set of actions that 
are available to the agent. In conventional 
applications of BDT, this set is of modest 
size and fully known to the agent. 
However, in natural environments, the 
range of possible effective actions can be 
overwhelming and is at least partly not 
known. To solve this problem, the agent 
could compute with a limited action menu 
that is pre-programmed and/or is  
a substantial target for transfer from 
previous learning.

treating averted potential punishments as 
being the equivalent of gained rewards32–35. 
Arousal has been interpreted as resulting 
from the prediction of a need for vigour36 
in terms of this unified opportunity cost. 
However, it is important to note that 
acting slowly might in some cases decrease 
exposure to threat, in which cases animals 
should either exhibit more haste than  
speed in active avoidance or engage in 
passive avoidance37.

Along with the conceptual problems 
described above, another problem for BDT 
is its formal intractability: the required 
computations can rarely be performed 
with viable amounts of time and/or require 
more storage than is realistically available. 
A number of generic approximations have 
therefore been proposed (BOX 2). As we 
describe below, specific exemplars of these 
approximations seem to govern behaviour 
under threat. It is important to note that 
these particular algorithms are not simple or 
transparent consequences of BDT itself.

Control algorithms for survival
Control algorithms are characterizations 
of ways that an agent — a machine or 
an animal — can determine appropriate 
actions. Efficient control algorithms 
approximate BDT as closely as possible 
while minimizing computational costs. 
Such algorithms can be classified along 
two orthogonal fault-lines (BOX 2). One 
concerns action contingency and is associated 
with the distinction between Pavlovian and 
instrumental control38,39. The other concerns 
prospective versus retrospective prediction 
about the future and is associated with 
the distinction between model-based and 
model-free control17,40–42.

By considering how behaviour under 
threat is controlled, we can identify several 
principles. Perhaps the most important 
in this area is the pre-programming that 
we mentioned above. One instance of 
this is Pavlovian control, in which there 
is an ineluctable coupling of particular 
predictions to particular actions. However, 
there are at least three further aspects of 
pre-programming, all of which arise as limits 
to flexibility or as a lack of requirement for 
inference or learning. First, as exemplified 
in the next section, algorithms often take 
as input only a selected set of sensory cues 
and ignore others43. Pre-specifying the set 
that is considered circumvents the more 
general problem of inferring which cues are 
relevant44. Second is plasticity: the extent to 
which predictors of important outcomes can 
be learned de novo. Some systems cannot 

A separate dimension of choice is when 
or how vigorously to act. A cost–benefit 
trade-off arises, with the energetic or 
inaccuracy cost of acting quickly balanced 
against the opportunity costs of acting 
slowly30–32. In benign environments, 
opportunity costs are rewards foregone 
while being slothful and are quantified 
according to the average reward rate in the 
environment. In threatening environments, 
acting slowly may increase exposure to 
threat. It has been suggested that these two 
sorts of opportunity cost can be unified by 

Box 2 | Types of controller

A controller is a system or device that selects or modulates internal or external actions.  
Controllers have algorithmic or mathematical descriptions in terms of things such as the 
constraints that they exactly or approximately enforce; they can also be implemented in neural 
tissue or in other substrates.

Pavlovian versus instrumental control
Animal behaviour reflects the influence of different controllers with specific characteristics. 
Pavlovian control hard-wires certain pre-programmed behaviours to certain events, or to learned 
predictions thereof, without evaluating the consequences of the actions. In environments or 
circumstances that are suitably stable (that is, action–outcome contingencies that are expected to 
be constant over the organism’s whole life), there are advantages to this approach; however, in 
labile environments, animals must be more flexible. Instrumental control, even if it reflects certain 
initial biases, can learn to make choices on the basis of the contingency that is experienced 
between action and outcome, thus providing more flexibility. Pavlovian and instrumental control 
can be experimentally distinguished by exploiting cases in which hard-wired actions (such as 
pecking predictors of food pellets in pigeons122 or rooting with objects associated with food in 
pigs123) are pitted against experimentally determined contingencies (such as denying or delaying 
rewards that are approached in this way).

Model-based versus model-free control
At least two canonical methods have been described for making predictions when whole 
trajectories of future states and possible actions must be considered. Model-based reasoning120 
involves building a precise set of beliefs about the structure of the environment and the outcomes 
that it affords, and searching the model prospectively at the time of choice through a form of 
dynamic programming120. This has some attractive properties: for example, models are often 
relatively easy to learn, and choices can be appropriately sensitive to changes in the environment. 
However, building and searching such models can be ruinously expensive in terms of computation 
and working memory as the number of future possibilities escalates113. Thus, simplification is 
essential. One simplification is a more general form of model-based control algorithm70, in which 
action–outcome contingencies are assumed to be fixed. This is Pavlovian model-based control, 
which still involves a representation of a specific goal.

Model-free reasoning provides a radically different method of simplification: estimates or 
predictions of net long-run utility are learned by experience, based on nothing more than ‘cached’ 
observations of the utility itself via Pavlovian or instrumental learning rules, without building or 
using a model. The resulting values are intended to estimate the same quantities that model-based 
reasoning would produce: the summed expected utility of the future outcomes120. Given the way 
that these estimates are acquired, model-free predictions cannot change immediately if either the 
worth of the outcomes changes (for example, because of satiation) or the transitions leading to 
them are altered124. This characteristic fixedness allows model-based and model-free values to be 
discriminated experimentally.

The need to integrate model-based and model-free influences has been considered to be an 
example of a more general meta-control problem125–128, influenced by particular characteristics 
such as the relative uncertainties of the two sorts of controller17 or the cost versus benefit  
of engaging in expensive model-based calculations to overcome potentially incorrect  
model-free ones129,130.

For completeness, we note that model-based instrumental control is sometimes equated with 
‘rational’ or ‘non-emotional’ control and contrasted with ‘emotional’ model-free or even Pavlovian 
control131. However, such a characterization is not well supported by the evidence and 
interpretations that we have adduced.

P E R S P E C T I V E S

NATURE REVIEWS | NEUROSCIENCE	  VOLUME 18 | MAY 2017 | 313

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



learn at all and consequently can only operate 
in a purely pre-specified manner43; for others, 
plasticity is limited45,46. Third is that the 
menu of possible actions may be restricted 
to different degrees, pre-specifying which is 
ever even considered47. As we describe below, 
various behaviours seem to be controlled 
by distinct algorithms that have different 
pre-programming characteristics and may 
thus potentially represent separate controllers.

Consummatory actions. Consummatory 
responses — instincts, or fixed action 
patterns — occur in the presence of 
evidently significant events, such as 
imminent or proximal threat. They seem to 
be substantially pre-programmed; however, 
they are not hard-wired to the extent that 
activation of an algorithm leads to the same 
action pattern every time.

Startling, for instance, is a stereotypical 
action pattern that is found in many species. 
It protects a subject from predator attack, 
is exclusively elicited by a selective set of 
sensory cues, cannot become associated 
with other sensory cues via learning and 
is apparently not altered by unfavourable 
outcomes43. Thus, it seems to be governed 
by a Pavlovian controller and to be strongly 
pre-programmed in all three domains 
described above. However, its magnitude 
seems to vary according to the prior 
probability of attack and opportunity costs48. 
Certain other protective actions seem to 
be more plastic than startling: for example, 
the eye-blink reflex to corneal air puff 49 
can become associated with predictive cues 
through learning.

Other threat-related consummatory 
responses include the suite of behaviours 
that are often labelled as fight, flight and 
freeze responses50. The algorithm underlying 
these responses putatively infers the 
proximity of the threat that is a latent cause 
of the animal’s observations (this is known 
as the ‘defensive distance’ (REFS 51,52) or 
‘predatory imminence’ (REF. 53)) and makes 
delicate judgements between the response 
options. It is often implicitly assumed that 
this algorithm is Pavlovian and strongly 
pre-programmed in terms of the action 
repertoire.

In the absence of mortal threat, 
unexpected events may require sampling of 
information, and thus elicit a physiological 
orienting response54 and inhibition of 
goal-oriented behaviour55. These responses 
can co‑occur with feelings of surprise in 
humans55. However, the algorithms and 
implementations involved are less  
well understood.

arises from multiple separate neural 
controllers60. Precursors of threat are 
often learned through experience, thus 
requiring plasticity. This is apparent in 
cue-conditioned61 and context-conditioned 
freezing62. Such learning occurs for  
various sensory stimuli across different 
modalities, although some stimulus–
outcome combinations are apparently more 
readily learned than others45,63, suggesting 
that there is a pre-programmed restriction 
on plasticity.

Research on fear has also highlighted 
instrumental preparation for threat. 
Examples of this include conditioned 
active avoidance33 and the ‘escape from 
fear’ paradigm, which involves the de novo 
acquisition of actions that avert predicted 
threat47. Some pre-programmed constraints 
are apparent in the action repertoire: for 
example, rats can apparently learn to rear to 
avoid a threat but not to nose poke47.

Finally, a large body of work has 
described instrumental controllers for 
obtaining distal reward64. This forms  
a crucial part of the behavioural repertoire 
for survival in the context of foraging65,66, 
possibly resonating with emotional 
phenomena such as enthusiasm.

Resolving conflict between controllers. 
There may be direct conflict between 
different controllers’ prescriptions, 
for instance, between Pavlovian and 
instrumental mechanisms for achieving 
the same goal or between controllers 
advocating approach and avoidance  
(for example, when foraging in conditions 
of both hunger and threat52). In the latter 
case, the dedicated action pattern that is 
adopted to resolve such conflict has been 
termed ‘anxiety-like’ (REF. 8) and includes 
passive avoidance (that is, a complete lack 
of approach). In exploration or foraging 
paradigms, such avoidance gradually 
disappears over time67. A related response 
in humans is anxiety-like behavioural 
inhibition, which has been suggested to be 
partly under instrumental, and possibly 
model-based, control37,68.

Whenever controllers conflict, arbitration 
is necessary. One way this might happen is  
via some common currency reporting 
strength or importance on an absolute 
scale. Interestingly, there is an entire field 
in economics concerned with designing 
mechanisms that ensure that individual 
agents achieve common goals. It has been 
proposed to translate such approach to 
neuroscience, in our case, by regarding 
algorithms as individual agents69.

On the appetitive side, in non-human 
species, the manipulation and handling of 
food, aspects of social interactions between 
peers and parenting and/or husbandry have 
been identified as Pavlovian consummatory 
actions that persist even in the absence of 
reinforcement. Famous examples include 
pecking in gull chicks56, courtship in 
sticklebacks57, egg moving in geese57 and 
potentially elementary eating actions in 
wild gorillas58. The prevalence of such 
pre-programmed appetitive behaviours is 
not well researched in humans. They may 
occur, for example, in the context of affection 
between infants and parents or between 
sexual partners.

Preparatory actions. When significant 
events are not yet present but can be 
predicted from innate or learned precursors, 
preparatory controllers enter the frame. 
These often exhibit a substantial degree of 
plasticity. Predictions can be made in either 
a model-based or a model-free manner. 
Model-based predictions of forthcoming 
outcomes support specific forms of 
preparation; this could underlie particular 
bodily responses such as the conditioned 
protective eye blink49 or limb withdrawal59. 
Such preparation could be functionally 
linked to the consummatory responses that 
the actual arrival of the outcomes would 
inspire. However, model-based predictions 
could potentially also support more-general 
preparatory actions such as approach, 
avoidance and inhibition. By contrast, 
model-free predictions are, by their very 
design, limited to the support of such general 
preparation because they marginalize away 
specific outcomes. This means that they 
can lead to what seems to be suboptimal 
or self-contradictory choices. For example, 
in situations in which the outcome is 
devalued, a subject may execute preparatory 
actions that get it to a state in which a 
consummatory response would be possible 
but then fail to emit that response40. Both 
model-based and model-free predictions 
could determine a unified opportunity cost 
of sloth32.

Fear responses provide well-known 
examples of behaviours that are subject to 
a preparatory controller. These responses 
include Pavlovian actions that allow the 
subject to prepare for specific threats50 
and that might arise discretely from 
model-based algorithms, together with 
relatively unspecific bodily arousal that 
could arise from either model-based or 
model-free control. It has been suggested 
that preparation for specific threats 
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Summary. In sum, as described above, 
several control algorithms with distinct 
features jointly determine an animal’s 
survival-relevant choices. The control of 
many consummatory behaviours seems to 
be Pavlovian but model based70: that is, it is 
associated with specific outcomes but does 
not consider whether the desired outcomes 
are actually achieved. Furthermore, there 
seem to be several distinct algorithms in 
control of these behaviours, characterized 
by further pre-programming of specific 
aspects. It is difficult to explain such 
distinct algorithms in the context of a 
general-purpose emotion controller, as 
suggested by some dimensional theories in 
emotion psychology14. Instead, they resonate 
to a degree with theories that posit the 
existence of sets of distinct emotions1,71,72. 
On the other hand, the distinct algorithms 
highlighted here do not map onto the 
classical emotion categories proposed by 
basic emotion theory7,73 and its derivatives. 
For example, the phenomena classically 
labelled as ‘fear’ may involve parallel 
algorithms, including at least one that 
does not take previous action outcomes 
into account (Pavlovian) and one that 
does (instrumental). Thus, our analysis 
suggests the existence of discrete algorithmic 
categories that may not necessarily map 
neatly onto phenomenological boundaries.

If there is indeed a multiplicity of 
controllers that are incompletely aware 
of their own domains of applicability, 
arbitration may be necessary, which 
could rely on common currencies. 
Model-free controllers can, by design, 
not consider particular goals but only 
attach scalar quantities to environmental 
states or actions, as this underpins their 
formal simplicity. As such, the output of 
these controllers may be captured in a 
low-dimensional space with axes such as 
utility or valence (mediating approach 
or withdrawal) and arousal (mediating 
invigoration and inhibition).

As the appropriateness of control 
algorithms in a particular situation depends 
on the goals of the organism, substantial 
variability in their output is to be expected. 
It is therefore improbable that sharp 
boundaries can be drawn between  
phenomenological categories of behaviour 
as being associated with particular 
algorithms. Similarly, it may not be possible 
to enumerate precisely a particular set of 
algorithms on the basis of just behavioural 
evidence. Furthermore, organisms that 
occupy separate ecological niches may also 
use very distinct controllers.

Distributed neural controllers. Despite the 
evidence outlined above, we believe that it 
is probably inaccurate to consider discrete 
neural controllers as isolated coherent 
units that can be defined by their histology, 
macroscopic structure or transmitter 
systems. Rather, functional control units 
that can be separated on an algorithmic 
level could correspond to distributed and 
redundant systems on an implementation 
level. Hierarchically organized controllers 
may also involve some separate and some 
shared structures.

For example, learning to predict a 
specific threat and to elicit an appropriate 
response to predictors (as in Pavlovian 
fear conditioning) can be abstractly 
described by a single decision-making 
algorithm. However, it seems probable that 
a considerable array of brain regions is 
involved10. This could include computation 
of evidence for threat in the amygdala, 
computation of meta-evidence on the 
current applicability of this prediction in 
particular environments in the prefrontal 
cortex (as occurs, for example, during 
extinction training82), and the additional 
involvement of sensory cortices for 
predictors with particular sensory 
properties83,84.

Scalar representations. There is also 
evidence for neural representations of 
some of the axes of dimensional systems. 
Neuroimaging studies have demonstrated 
widespread representation of scalar stimulus 
valence85–88 and shared representation of 
diverse pleasures26; electrophysiological 
recordings show encoding of global utility 
in the orbitofrontal cortex89 and of reward-
prediction errors across various stimuli in 
phasic dopaminergic responses90. Model-free 
prediction and control, which lack specific 
goal directedness, have been ascribed to 
the central nucleus of the amygdala, the 
core of the accumbens and the dorsolateral 
striatum64,91–95. Furthermore, tonic 
dopaminergic responses seem to reflect 
average reward30,32. This duality of discrete 
and dimensional systems reflects our 
algorithmic notion that there are discrete 
controllers that use scalar functions, some  
of which are shared.

Arbitration between controllers.  
The crucial remaining implementational 
question concerns the neural basis of 
arbitration and interaction among the 
discrete controllers and, at a more  
systemic level, between model-based and 
model-free control.

Neural circuits for survival
Armed with this basic architecture of 
control, we now turn our attention to the 
analysis of their neural implementation. 
As described above, we have functionally 
defined a collection of discrete, 
pre-programmed algorithms and have also 
identified dimensions such as (predicted) 
positive and negative utility that drive 
model-free control or others that might 
arbitrate between controllers. This discrete 
and/or dimensional duality is also evident 
in the neural systems that mediate these 
control algorithms.

Multiple neural controllers. We have 
proposed the existence of multiple discrete 
controllers with restricted action menus. 
Some algorithmically distinct controllers 
are implemented in close macroscopic 
proximity. For instance, the controllers for 
fight and/or flight and for different kinds 
of freezing behaviour may be anatomically 
closely related in subdivisions of the 
periaqueductal grey74,75 and operate on 
the basis of the same sensory input. Utility 
functions that are associated with distinct 
controllers may be implemented in closely 
related and rather small neuron populations 
in the hypothalamus25.

In favour of macroscopically separated 
controllers, circumscribed brain lesions 
can have a profound and specific impact 
on emotional behaviour. For example, 
amygdala lesions impair what is termed 
cue-conditioned freezing76 but seem to 
leave intact some innate anxiety-like 
behaviour in rodents77. The latter are 
reduced by hippocampal lesions77,78, 
which do not affect cue-conditioned 
freezing76. There are other examples of 
such specificities: for example, it has 
been proposed that learning appropriate 
preparatory actions to specific threats 
(which algorithmically requires 
model-based control) may require partly 
separate and independent neural systems60.

In addition, different Pavlovian 
actions seem to be under the influence 
of topographically defined regions of the 
nucleus accumbens. Chemical stimulation 
of neurons in different parts of this structure 
can lead to appetitively or aversively 
directed actions79,80, although the loci that 
relate to each type of action vary according 
to the familiarity of the context81. Such 
gross dynamic reorganization according 
to properties of the environment may be 
a strategy to induce long-term, but not 
hard-wired, pre-programming of neural 
decision controllers.
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One worked example of this question 
concerns top-down, model-based 
inhibition. For instance, in learned 
helplessness experiments, the overexuberant 
activity in the serotonergic raphe that is 
caused by repeated negative outcomes and 
drives helplessness is apparently suppressed 
via the medial prefrontal cortex in those 
subjects that are able to exert control96. 
Thus, one controller that helps to mediate 
passivity and behavioural inhibition 
(the raphe) is suppressed by another 
(the medial prefrontal cortex). Indeed, 
neuromodulators and neuropeptides97 could 
provide a convenient way to communicate 
dimensional quantities such as utility 
or arousal globally, in keeping with 
widespread dopamine98, serotonin99 and 
noradrenaline100 projections. Circulating 

occur in the absence of overt behaviour. 
These are, of course, the subject of entire 
subfields of psychology107, and so our aim 
is just to show how they might fit into the 
current picture. Importantly, although they 
are regarded by some as being crucial for 
the assignment of an emotional label, we 
here assume that feelings are not required 
to initiate immediate actions, a proposal 
that is in line with previous biological and 
psychological approaches1,12,108. This  
raises two central questions: what are 
feelings? And what is, if anything, their 
adaptive function?

In terms of their nature, feelings might be 
meta-cognitive representations of the inner 
workings of decision-making systems. They 
would thus be constructed as the output 
of more-basic psychological operations18. 
Given the many ways described above that 
scalar quantities (such as utility and vigour) 
provide a low-dimensional projection of 
the bulk of decision-making controllers, it 
is no surprise that our subjective sense and 
its verbalization hews substantially to the 
dimensions of valence and arousal2,20.

Various data suggest that experienced 
(even incidental) feelings influence future 
decisions, as well as immediate actions109. 
First, there is a suggestion that moods 
can be understood as long-run averages 
of short-lasting feelings and that these 
moods could themselves have an enduring 
impact on future decisions, acting as forms 
of generic environmental priors36,110,111. 
Second, although decisions are shaped 
by currently experienced feelings, they 
are also influenced by the feelings that 
are anticipated to occur after relevant 
outcomes112. Hence, feelings experienced 
in the past may provide sparse and efficient 
signals for future deliberation of decision 
outcomes and thus simplify model-based 
search113 and/or memory lookup114. Such 
anticipated feelings may be rather abstract 
or may induce actual feelings115. As feelings 
are only incompletely able to represent the 
full workings of the various controllers, their 
influence may seem to be suboptimal or 
irrational (just as we argued for model-free 
controllers). Last, an adaptive function of 
conscious feeling may be to enable verbal 
communication that relies on conscious 
access to content. Communication is 
an aspect of emotions that we have not 
discussed in this Review (BOX 3).

Overall, the view outlined in this 
article provides a basis for the existence of 
dedicated feelings attached to emotional 
behaviour, something that is only 
incompletely paralleled in the conscious 

hormones (for example, stress hormones101) 
could spread even broader influences over 
even longer timescales.

There is also evidence that instrumental 
inhibition of Pavlovian misbehaviour is 
accompanied by particular theta rhythms, 
which could be signatures or signals 
associated with regulation102. Relevant to 
this, it is known that controllers of fear and 
anxiety, which seem to exploit a common 
microcircuit for storing threat predictions103, 
are associated with amygdala oscillations in 
the same theta frequency range52,104–106.

Feelings as actions
We have so far considered emotions from 
the outside looking in. One could adopt 
a more first-person view and ask about 
subjective feelings, which in humans often 

Glossary

Decision theory
A computational-level theory for making choices  
given information about states and resulting utilities. 
Bayesian decision theory is a formally optimal (normative) 
decision theory.

Algorithms
In this article, an algorithm denotes an abstract, 
self-contained set of operations or effective procedures 
that maps sensory input and internal state to external and 
internal actions.

Controllers
In this article, a controller corresponds to a realized neural 
circuit that is capable of implementing one or several 
algorithms for choosing or emitting actions.

Constructionist approaches
A family of theoretical approaches that view subjectively 
experienced mental categories (such as feelings) as 
constructed representations of more-basic psychological 
operations, which are not consciously accessible.

Utility functions
A real utility function quantifies how useful or dangerous 
certain outcomes are to an agent, in a given situation, and 
is realized in the output of actual neural circuits. A virtual 
utility function is an as‑if construct that provides 
quantifications that are consistent with behavioural 
choices, but without necessarily underlying those choices.

Consistency
Choice consistency, or independence, denotes that if A is 
preferred over B, then A + C is preferred over B + C, 
irrespective of what C is. This is a fundamental component 
of expected utility theory and of revealed choice theory.

Transitivity
Assuming that A is preferred over B and that B is preferred 
over C, these preferences are said to be transitive if A is 
also preferred over C. This is a fundamental component of 
expected utility theory and of revealed choice theory.

Pre-programming
In this article, pre-programming refers to any restriction on 
the workings of a controller that can be cast in Bayesian 
decision theory terms as an immutable, prior mapping of 
state or prediction to action, or utility function.

Action contingency
The causal relationship between the execution of actions 
and the outcomes that result.

Pavlovian
In this article, the term Pavlovian is used to denote an 
algorithm or a controller making a choice of actions  
that is insensitive to the actual consequences of those 
actions. Here, the term is not used to denote  
design characteristics of experiments (as is sometimes  
the case).

Instrumental
In this article, the term instrumental refers to an 
algorithm or a controller making choices that are 
contingent on their past or predicted future 
consequences. Here, the term does not refer to design 
characteristics of experiments.

Model-based
In this article, the term model-based is used to 
characterize algorithms that exploit a model of the 
structure of the environment and the outcomes that it 
affords to make long-run predictions about the future. 
Predictions need not be action contingent and thus can 
support either Pavlovian or instrumental controllers.

Model-free
In this article, the term model-free is used to describe 
algorithms that learn to make long-run predictions by 
caching or saving experiences from the past, generally 
by enforcing self-consistency in successive outputs. 
Predictions are typically scalar, for instance, of summed 
future value and consequently do not encode the 
specific outcomes underpinning those values. 
Model-free predictions need not be action  
contingent and thus can support either Pavlovian or 
instrumental controllers.

Appraisal theory
A family of emotion theories, all of which posit that 
manifestations of emotions (feelings, motivational 
processes, bodily reactions, and so on) are the output of  
a set of cognitive appraisals or encompass such 
appraisals. Theories differ widely according to the 
appraisals that they consider part of the set.
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perception of other mental operations. The 
existence of such feelings would thus explain 
the lingering differentiation between cold 
and hot cognition in neuroscience research, 
even though such a distinction may not exist 
in terms of the mathematical or even neural 
structures of the inferences concerned116,117.

Conclusion
Emotion is a vast and critical topic. We 
have tried to provide a formal foundation 
for a computationally oriented study 
of emotions. Our decision-theoretic 
approach resonates with a central tenet of 
appraisal theories of emotion: emotional 
phenomena are the output of a system for 
response optimization14, just like any other 
behaviour. We therefore analysed the goals 
of behaviour in biological environments, 
dissected emotions into associated actions 
and feelings, and characterized aspects of 
the particular decision-making algorithms 
that govern these actions. We exploited 
parallels with reward-based decision making 
in which the decision-theoretic analysis 
of model-based and model-free, as well as 
Pavlovian and instrumental, control has 
been more extensively examined. However, 
our focus on threat allowed us to highlight 
the crucial importance of pre-programming 
in controlling phenomena that are often 
associated with emotions. We discussed 
some of the evidence for multiple, discrete, 
neurally distinct decision-making systems 
that do not map onto classical phenomeno
logical emotion categories, as well as for 
scalar systems that support dimensions 
of behaviour and possibly also feeling. 
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