PsPM course session 5

Model-based analysis of heart period responses

Philipp Paulus Max Planck Institute for Human Cognitive and Brain Sciences Research Group: Adaptive Memory

Summary

1. Background

anatomy, autonomic input, evoked & fear conditioned responses in operational literature

2. Modeling event-related heart period responses

model development, assumptions, accuracy, applications

3. Fear conditioned bradycardia

model development, accuracy, comparison with SCR

4. Practical implementation

how to preprocess, set up 1st level GLM

The anatomy of the heart

Two main compartments of the heart

- right atrium & ventricle pump deoxygenated blood into the lungs
- left atrium & ventricle pump oxygenated blood via aorta into the whole body

QRS complex marks main contraction of the ventricles that precedes the ejection of blood from the heart

The anatomy of the heart

Two main compartments of the heart

- right atrium & ventricle pump deoxygenated blood into the lungs
- left atrium & ventricle pump oxygenated blood via aorta into the whole body

QRS complex marks main contraction of the ventricles that precedes the ejection of blood from the heart

Different time courses for PNS and SNS influence

- SNS exhibits steady state influence < .12 Hz
- respiration causes HRV via PNS (vagus)

Heart rate VS. heart period (see Berntson et al., 1995)

HR (bpm)

HP (ms)

Cat (Rosenblueth & Simeone, 1934)

Evoked heart responses in the literature

Affective picture viewing

Material type matters: differential autonomic control modes?

Evoked heart responses in the literature

- Material type matters: differential autonomic control modes?
- Stimulation durations matter: response shape ~ duration
- Response function unknown: too few & no systematic experiments

Fear conditioned cardiac responses

- Secondary deceleration (bradycardia) as a measure of fear memory in humans and animals
- Repeated conditioning amplifies bradycardia

MODELLING EVENT RELATED HEART PERIOD RESPONSES

Developing a model for event related heart period responses

- Elicit different sympathetic / parasympathetic control modes
- Qualitatively different experimental situations

Modeling event-related heart period responses

	n	Design	PNS	SNS
Auditory white noise	61	20 white noise bursts ~ 85dB , duration 1s, ITI 29 – 39 s	₽	
Auditory oddball		6 oddball tones in 1 s series of standard tones, duration 50ms ,'IOI' 29 – 39 s	2	2
IAPS picture viewing	23	48 IAPS pictures (16 neg., 16. neu., 16. pos), duration 1s , ITI 43 – 47 s	1	

Qualitatively different average responses in all experiments

Qualitatively different average responses in all experiments

8

6

4

Mean HPR (a.u.)

Model development: finding response functions

- 1. model individual peaks
- Select most appropriate function
 → Gaussian
- 3. Set free parameters to fit the peak: μ = peak σ = shape

Include RF into the final model, if ...

- 1. stable acceleration/deceleration across experiments or
- 2. separation of at least two out of the three experiments

Model accuracy

Model development

Snipes & Taylor (2014) Kass & Raftery (1995)

Modeling event-related heart period responses

	n	Design	PNS	SNS
Auditory white noise	61	20 white noise bursts ~ 85dB, duration 1s, ITI 29 – 39 s	₽	
Auditory oddball		6 oddball tones in 1 s series of standard tones, duration 50ms ,'IOI' 29 – 39 s	12	2
IAPS picture viewing	23	48 IAPS pictures (16 neg., 16. neu., 16. pos), duration 1s , ITI 43 – 47 s	1	
Validation experiment	19	120 trials (30 IAPS neg., 30 IAPS pos., 85 dB white noise, 65 dB white noise), ITI 10s ± 6s		

Model accuracy

Peakscoring

Model development

Model validation

Snipes & Taylor (2014) Kass & Raftery (1995)

LTI assumptions are only approximately met

Respiratory sinus arrhythmia (RSA)

- RSA is a nonlinear influence on HPR
 - → reduce impact: many trials
- range of HP is limited: system will quickly saturate
 - use adequate ITIs: allow the system to return to baseline

Model for evoked heart period responses

Heuristic model that separates experimental conditions better than all tested operational methods

- Model for short presentation times (~1s)
- LTI assumptions need further testing: use only RFs that peak within the ITI

MODELLING FEAR CONDITIONED BRADYCARDIA

Fear conditioned bradycardia

Time (s)

CS+ - CS- difference quantifies fear memory

- Individual CS+/- response shapes not stable across experiments
- Difference between CS+ and CS- stable over experiments
- \rightarrow Model quantifies the degree to which a trial is CS+

Model structure and accuracy

Model components

- 1. HPRF: diff(CS+,CS⁻)
- 2. HPRF': temporal derivative
- 3. Early resp.: RF1 of evoked model
- 4. CS- resp.: fit of CS- only

Model structure and accuracy

Model components

- 1. HPRF: diff(CS+,CS⁻)
- 2. HPRF': temporal derivative
- 3. Early resp.: RF1 of evoked model
- 4. CS- resp.: fit of CS- only

Model accuracy

- P1-3 Peak scoring
- G2 HPRF + HPRF' G2' – US locked – G2

Is fear conditioned bradycardia time locked to CS or US?

Tested by varying CS – US interval:

- Castegnetti et al. (2016): SOA 3.5 vs. 4s fit for time lock on US better than for CS
- Castegnetti et al. (2017): SOA 3.5 vs. 4/6s fit for US better

Gaussian input translates evoked HPR to fear bradycardia

HPRF is RF1_{evoked} with gaussian input centred at US

Model accuracy - compared to SCR

Model is significantly better than operational methods
 Is fear conditioned bradycardia even more accurate than SCR?

Model accuracy - compared to SCR

- Model is significantly better than operational methods
 Is fear conditioned bradycardia even more accurate than SCR?
- Large trial numbers: dominance of respiratory rhythms single trial estimates in HPR not possible

Summary

- model significantly better than available operational methods
- for large trial numbers might even be more accurate than SCR (BUT: no single trial estimates)
- LTI assumptions approximated for adequate ITIs & trial numbers to average out RSA

How to model event-related heart period responses?

0. Import

- 1. Preprocessing
 - Detection of heart beats
 - Interpolation of the time series
 - Quality checks

Preprocessing – ecg2hb, quality checks, hb2hp

Convert Heart Beat to heart period interpolates heart beat time stamps into continuous heart period data and writes to a new channel. This function uses heart period rather than heart rate because heart period varies linearly with ANS input into the heart.

Convert Peripheral pulse oximetry to heart beat first creates a template from non-ambiguous heart beats. The signal is then cross correlated with the template and maxima are identified as heart beats.

Convert. ECG to heart period allows to directly convert continuous ECG data into continuous heart period data.

How to model event-related heart period responses?

- 0. Import
- 1. Preprocessing
 - Detection of heart beats
 - Interpolation of the time series
 - Quality checks
- 2. Set up the model
 - Setting up the 1st level GLM
 - Reviewing the model

Evoked responses: setting up the 1st level GLM

Review the model

Design matrix

Review the model

Design matrix Reconstructed responses

Fear conditioned bradycardia: setting up the 1st level GLM

FIR model ... alternative to the model for evoked responses

FIR model ... alternative to the model for evoked responses

MAX PLANCK INSTITUTE FOR HUMAN COGNITIVE AND BRAIN SCIENCES

Max Planck Research Group "Adaptive Memory"

Thank you ...

@pauluspc

paulus@cbs.mpg.de

www.cbs.mpg.de/~paulus

